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Abstract 
System reliability is predicted for the EcoLife 6-gear automatic transmission from ZF Friedrichshafen 
AG taking various calculations and testing procedures during product development into account at 
different system levels. The system reliability predicted in this way is compared to the field reliability 
derived from the actually observed failure behaviour. The combination of methods as developed, applied 
and validated in this paper aids in streamlining reliability efforts due to the fact that an updateable 
process of determining reliabilities at various system levels is formed. 
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1. Motivation and introduction 
The assurance of a newly designed gearbox’s reliability is typically achieved during product 
development by means of calculation and testing. Calculations are typically executed for components 
of the gearbox and enable technical designers to assure structural durability under operational stresses, 
or endurance strength. Typically, tests are conducted at different system levels, e.g. at a component, 
module or system level. Furthermore, they can have different characteristics and purposes, e.g. 
determining the unit’s lifetime through “end-of-life tests” (EoL) or exclusively assuring a certain 
minimum reliability level for which “success-run tests” (SR) may be implemented. 
The two central questions are: 

 How can different sources of information be used and combined in order to efficiently generate 
an assured statement on the overall system reliability? 

 Can the reliability levels predicted in this way during product development be confirmed by 
actually observed values in the field? 

2. General approach 
Prior knowledge gained from calculations, simulations and tests is considered when deriving a statement 
on the current reliability at the level of a component, subsystem or system. The combination of different 
items of prior knowledge within a unit (component, module, etc.) is implemented by means of a Bayes’-
theorem-based approach (Bayes and Price, 1763) based on the Beta distribution as described in Krolo 
(2004, pp. 39–42) and Krolo and Bertsche (2003). The approximation using the (Beta) distribution 
moments (method of moments, Thompson and Haynes, 1980) is applied to make use of reliability values 
for different components to prior knowledge at a higher system level, as described in Maisch (2007, pp. 
95–96) or Martz et al. (1988) for example. 
The reliability model, i.e. the reliability-relevant system structure with all its subsystems and components 
to be considered in terms of their reliability, represents the point of departure. So-called “prior probability” 

DESIGN METHODS 965



 

(a reliability distribution) represents an indispensable input to Bayes’ theorem. Bayes’ theorem connects 
this prior probability with additional information from further tests to the posterior probability (another 
reliability distribution). Validation of the approach is implemented through a comparison of the predicted, 
theoretical reliability and the actually observed reliability in the field at different system levels. 
The adapted approach of applying Bayes’ theorem and the method of moments to the EcoLife gearbox 
is described in more detail in Chapters 3 and 4 respectively. 

3. Combining prior knowledge with current test results 
Prior knowledge gained through calculations, simulations or preceding tests of similar products in terms 
of their design or of the same product – potentially from a previous generation – is considered in addition 
to current test results when assessing the reliability of the product. The confidence level (≈ degree of 
assurance) can thereby be increased and/or the number of test samples required to conduct the 
corresponding assurance tests reduced. 
Bayes’ theorem combines prior knowledge in the form of a prior density function with the failure 
behaviour of the product in its current state to the posterior density function. The latter represents an 
updated and more accurate estimation of the actual reliability value. 
In the course of this paper, the prior density function stems from calculations; the additional information 
stems from tests. 
The posterior density function resulting from Bayes’ theorem can be mathematically stated as follows, 
cf. (Bertsche and Lechner, 2004, p. 274), for example: 

fሺR|Eଡ଼ሻ ൌ
PሺE୶|RሻfሺRሻ

 PሺE୶|RሻfሺRሻdR
ଵ


 (1) 

Here, f(R) ≙ prior density function, P(Ex|R) ≙ conditional probability, f(R| Ex) ≙ posterior density 
function, R ≙ reliability. 
The conditional probability is typically described as a binominal distribution (Krolo and Bertsche, 2003; 
Krolo, 2004, p. 37): 

PሺE୶|Rሻ ൌ ቀ
n
xቁR

౬
ౘ୰ౘ౦୬ି୶ሺ1 െ Rሻ୶ (2) 

Here, n ≙ sample size, x ≙ number of failures, b ≙ Weibull shape parameter under field conditions, 
bp ≙ Weibull shape parameter under test conditions, Lv = lifetime ratio, r = acceleration factor. 
The conditional probability is described as a binominal distribution (cf. Equation 2) and the prior density 
function of reliability as a Beta distribution (cf. Equation 3). The Beta distribution’s descriptive 
parameters are A0 and B0, where “0” simply denotes the fact that prior knowledge is concerned. The 
method as described and applied here transfers knowledge stemming from component tests to its full 
extent. A partial transfer is possible, as is described in (Krolo, 2004, p. 75), for example. 
The prior density function of the form 

fሺRሻ ൌ
1

βሺA, Bሻ
Rబିଵሺ1 െ Rሻబିଵ (3) 

is integrated into the posterior density function by means of Bayes’ theorem as follows: 

fሺR|Eଡ଼ሻ ൌ
Rబିଵା୬ି୶ሺ1 െ Rሻబିଵା୶

βሺA  n െ x, B  xሻ
. (4) 

While βሺa, bሻ ൌ  tୟିଵሺ1 െ tሻୠିଵdt
ଵ
  being the beta function. 

This corresponds to a Beta distribution with the descriptive parameters A and B:  

A	 ൌ 	 ሺA  n െ xሻ; 	B	 ൌ 	 ሺB  xሻ (5) 

The mathematical integration of Equation 4 yields the confidence level PA. 
Items of prior knowledge from calculation result in a theoretical reduction of the test sample size ∆nୡୟ୪. 
This is calculated under the assumption that a step function with the increment at R(ts) describes f(R) and 
that a binominal relation exists between reliability and confidence when success runs are the subject matter: 
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∆nୡୟ୪ ൌ
ln ቆ

R୲ୟ୰ୣ୲ሺtୱሻଶ

Rୡୟ୪ሺtୱሻ
ቇ

ln ቀR୲ୟ୰ୣ୲ሺtୱሻቁ
 (6) 

Here, Rtarget(ts) ≙ the targeted reliability level at the specified lifetime ts, Rcal(ts) ≙ the calculated 
reliability level at the specified lifetime ts. 
Moreover, it is assumed that Rcal is linked to a confidence level of PA = 50%. The means of calculating 
∆ncal replaces the one presented in Krolo (2004, p. 69-70), which is a numerical calculation. The adapted 
approach presented here is still in line with Dr. Krolo. The underlying step function as the prior 
knowledge density is illustrated in Figure 1. Its increment is at Rtarget(ts). The calculated reliability at the 
specified lifetime ts (Rcal(ts)) needs to be greater than the squared target reliability at the same time 
(Rtarget(ts)). Otherwise a negative sample size reduction is calculated. In practice, it can typically be 
assumed that Rcal > Rtarget. If the calculated reliability was lower than the target reliability, redesigns would 
be implemented to assure the product’s durability through calculations before the test phases began. 

 
Figure 1. Reliability density function for prior knowledge from calculation 

When prior knowledge from calculations is used and when current test results stem from i success-run 
(SR) or end-of-life (EoL) tests with lifetime ratios (Lv), acceleration factors (r) and x failures (in case of 
EoL), Equation 5 becomes Equation 7. Here, no prior knowledge from preceding tests is included, which 
is why A0 and B0 are excluded. 

ܣ ൌሺܮ௩ ∙ ሻݎ
 ∙ ݊  ∆݊ െ ݔ



; ܤ ൌ 1   (7) ݔ

These are the parameters describing the posterior Beta distribution of the reliability density function. 
The distribution obtained in this manner is used in this paper to determine the reliability value 
corresponding to a given confidence level. 

4. Combining prior knowledge with higher system levels 
Prior knowledge of a subordinate system level is combined with the reliability density function of a 
superordinate system level, cf. Figure 2. In this paper, this is achieved through the approximation of the 
Beta distributions’ moments. The prior density function representing a now higher system level can be 
considered as prior knowledge as described in Chapter 3, and can be combined with current test results 
at that same system level. 
The Beta-distributed parameters of the reliability density function at the aforementioned superordinate 
system level are calculated by means of Equations 8. This is an approximate approach. The resulting 
distribution represents the prior density function in case current test results from tests at this system 
level are available and both pieces of information are to be combined. This is implemented as suggested 
in (Martz et al., 1988; Maisch, 2007), for example. The expected value ܧ௦ሺܴሻ represents the system 
distribution’s first moment here, cf. Equation 9. The method as described and applied here transfers the 
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prior knowledge to its full extent. A partial transfer is possible, as proposed and described in (Martz et 
al., 1988; Maisch, 2007, p. 96).  

 
Figure 2. Combination of reliability densities from the component level with the prior 

density function at a system level (cf. Maisch, 2007, p. 93) 

ܣ ൌ ൫1 െ ሺܴሻ൯ܧ ∙ ா
ሺோሻమ

ሺோሻ
െ ;ሺܴሻܧ ܤ ൌ ܣ ∙ ଵିா

ሺோሻ

ாሺோሻ
 (8) 

Here, the expected value of the system’s prior density function based on ܣ and ܤ of the j components’ 
Beta distribution: 

௦ሺܴሻܧ ൌෑ
ܣ

ܣ  ܤ



ୀଵ
 (9) 

The system distribution’s variance ܸܽݎ௦ሺܴሻ is calculated as follows: 

௦ሺܴሻݎܸܽ ൌෑ
ܣ ∙ ሺܣ  1ሻ

ሺܣ  ሻܤ ∙ ሺܣ  ܤ  1ሻ
െ ௦ଶሺܴሻܧ



ୀଵ
 (10) 

Further methods exist for determining the system’s (prior) density function via the contributing 
components’ reliability distributions. The Mellin transformation can be an exact method under certain 
circumstances. One other alternative to the method described above is the approximative determination 
by means of the Monte Carlo simulation. A comparison of the methods is undertaken in Zeiler and 
Bertsche (2015).  

5. Merged approach 
Figure 3 shows the scheme of the applied approach of combining prior knowledge within a component 
(cf. Chapter 3) as well as combining the posterior density functions determined in this manner with the 
superordinate system level (cf. Chapter 4), whereby the obtained density function can be considered a 
prior density function, which can in turn be combined with test results conducted at that system level. 
The Beta distribution stemming from the combination of prior knowledge with the superordinate system 
level represents the prior density function of this very system level. It is updated with the information 
from current tests by means of the approach presented in Chapter 3 (Bayes’ theorem). The resulting 
posterior density function at the system level is therefore updated with the information form the 
corresponding tests, cf. Figure 3. 

968 DESIGN METHODS



 

 
Figure 3. Approach applied to the combination of prior knowledge 

6. The EcoLife sample gearbox 
The reduced system structure which is to represent the entire EcoLife system in the context of reliability 
is illustrated in Figure 4 together with an image of the gearbox itself. The 15 components which are 
considered for the reliability prediction and validation are outlined in bold. For these, prior knowledge 
from calculations is included. 

 
Figure 4. Simplified system structure for the EcoLife sample gearbox 

Besides the simplification of the complex EcoLife into 15 components, the following assumptions are 
underlying: 

 The system structure is strictly serial, 
 The reliability densities are described by means of Beta distributions, 
 The reliabilities of those components not explicitly regarded are assumed to be R(ts) = 1 (100%), 
 Every set of planetary gears was tested several times without failure and its components’ stresses 

were translated into individual lifetime ratios. The independence of tests at a subsystem level 
(planetary transmission) and component level is provided. Test results are considered twice, i.e. 
both at component and subsystem level. 
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7. Calculation of the posterior reliability exemplified for planetary transmission 1 
Initially, prior knowledge from calculations for the individual components allocated to planetary gear 1 
(cf. Figure 4) is combined with current test results via Bayes’ theorem (cf. Chapter 3). This is 
exemplified for the planetary bearing component of planetary transmission 1. 
Next, each of the calculated posterior reliability densities of all 4 components (sun gear, planetary 
bearing, planet gear, ring gear) are combined to result in a (prior) reliability density of the 
superordinate system level of the planetary transmission by means of approximation using the Beta 
distributions’ moments (cf. Chapter 4). Premises and results of this sample calculation are 
summarized in Table 1. Sensitive data is concealed with a hash. The variable tcal represents lifetime 
resulting from calculations. 

Table 1. Premises and results from planetary bearing calculation, summary 

ts 1 [-] b 1.5 [-] 

Rtarget(ts) #% t0 0.44 [-] 

PA(Rtarget(ts)) 50% T # [-] 

tcal 8.72 [-] Rcal (ts) #% 

R(tcal) #% ∆ncal 1.98 units 

 
The reliability at the specified lifetime ܴሺݐ௦ሻ is calculated as follows (Bertsche and Lechner, 2004, 
p. 43): 

ܴሺݐ௦ሻ ൌ ൫1 െ ሻ൯ݐሺܨ
൬
௧ೞି௧బ
௧ೌି௧బ

൰
್

 (11) 

The theoretical reduction of the sample size ∆nୡୟ୪ is calculated using Equation 6. 
Table 2 summarizes the test results for the component planetary bearing 1, i.e. the items of information 
for conditional probability, cf. Equation 1. 
The value for the shape parameter b of the Weibull distribution is deliberately higher. Different shape 
parameters b result when describing empirical failure data which factually indicates a failure-free time 
t0 with 2- or 3-parameter Weibull distributions. The shape parameter for the 2-parameter Weibull 
distribution tends to be higher. As for the tests, a 2-parameter Weibull was hypothesized by ZF 
Friedrichshafen AG. 

Table 2. Test results for planetary transmission 1, summary, 3 success runs (SR) 

n 1 per SR Lv1 1.18 [-] 

b 2 [-] Lv2 2.41 [-] 

r 1 [-] Lv3 1.69 [-] 

 
Equations 8 are applied to calculate the descriptive parameters of the Beta distribution. The posterior 
reliability density functions obtained for the planetary bearing in this manner, in addition to the 
additional density functions of the other components in planetary transmission 1 according to the system 
structure (cf. Figure 4), are illustrated in Figure 5 (thin lines, dashed). Those density functions for the 
sun gear and the ring gear are coincidentally identical. 
The reliability density of planetary transmission 1 is also illustrated (bold, dashed) in Figure 5. The 
descriptive parameters were calculated using Equations 8 - 10. This reliability density is regarded as a 
prior density function (cf. Chapter 5), as represented by the parameters A0 and B0, and is combined with 
the available test results. Equation 7 then becomes Equation 12. 

ܣ ൌ ܣ  ∑ ሺݒܮ ∙ ሻݎ ∙ ݊  ∆݊ െ ݔ ܤ ; ൌ ܤ   (12) ݔ

If no calculation results are available, as is the case at the system level of the planetary transmission, 
this means that no prior knowledge from calculations can be used, i.e. ∆ncal = 0. 
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Figure 5. Reliability densities of planetary transmission 1 

Planetary transmissions 1 and 3 were tested without failure in three tests with different lifetime ratios. 
The consideration of these test results in line with the approach described in Chapter 3 or according to 
Equation 12 leads to an improved (updated) statement on reliability. A certain reliability level was able 
to be predicted with a higher confidence level. Figure 5 also illustrates the obtained posterior density 
(resulting from the consideration of the test results) of planetary transmission 1 (bold, solid). 

8. Reliability densities of further components, modules and subsystems 
The reliability densities of further units according to the system structure are determined in the same 
way as the approach described above. Some differing aspects will be clarified below. 
Turbine shaft: A uniformly distributed reliability density is considered to be prior knowledge. This 
corresponds mathematically with ∆nୡୟ୪ ൌ 1 (cf. Krolo, 2004, p.70). Six EoL tests and one SR test at 
different stress levels are considered to be information with which the prior knowledge is updated. The 
test results are referenced to the equivalent lifetime under field conditions by means of the inverse power 
law. Lifetime ratios are determined. As for the Weibull shape parameter, a typical empirical value is 
assumed. 
Driving shaft: Calculation results are combined with results from 5 SR tests. The stresses the shaft is 
exposed to during the different tests varies. The achieved load cycles are related to their equivalent under 
field stress in order to calculate lifetime ratios. The test character has no influence on the consideration 
of lifetime ratios. Failures are taken into account through the added “x”, cf. Equation 12. By means of 
an amplitude modulation in accordance with (Haibach, 2006, p. 185), the different shares of the stresses 
are reduced to a purely alternating load.  
Planetary transmissions 2 and 3: The reliability density of transmissions 2 and 3 are calculated in the 
same way described by way of example in Chapter 7 for that of planetary transmission 1. Again, the 
prior density functions stemming from calculations are considered as prior knowledge and are each 
combined with three EoL tests in order to obtain the posterior density functions. These posterior density 
functions turn into the prior density function at a superordinate system level thanks to the approximation 
by means of the Beta distribution. 
Piston A: Calculation results concern the area identified as the most critical. In the process, different 
surface roughness levels were analysed. Test results are available for two different stresses (pressures) 
from three SR tests each. The individually bearable number of load cycles is again concluded through 
the inverse power law, while the exponent of the inverse power law is estimated based on similar 
products. The other components of the subsystem “shifting elements” are not part of the analysis of this 
project, which means that they are assessed with R = 1 (cf. Chapter 6). The calculated reliability density 
of piston A is therefore equal to the superordinate subsystem clutch A, which is in turn equal to its 
superordinate subsystem “shifting elements”. 
Figure 6 illustrates inter alia the reliability densities of the subsystems “turbine shaft”, “driving shaft”, 
“planetary transmissions 1-2” and “clutch A”. 
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9. System reliability density of EcoLife 
The densities of planetary transmission 1-3, together with the densities of the turbine shaft and the 
driving shaft, resulted in the reliability densities of the planetary gear train, cf. system structure in Figure 
4. This density, combined with clutch A’s density (which was said to be equal to that of shifting 
elements), results in the reliability density of the overall EcoLife system. The density of clutch A is 
described by a very high A-value, while its B-value is comparatively low (similar to the densities of the 
turbine shaft and the driving shaft). This implies a very high reliability. Combined with the planetary 
gear train, this results in the density of the overall system. The density of the planetary gear train and of 
the overall EcoLife system are almost identical in this model, as very high reliabilities for both the 
turbine shaft and the driving shaft were predicted, cf. Figure 6. 

 
Figure 6. Reliability densities of the subsystems and the system EcoLife 

10. Validation: Comparison of predicted and observed reliability 
The accuracy of the predicted reliability is retrospectively assessed through a comparison with the 
reliability levels observed in the field. Documented failures form the basis for the analysis of the 
confidence level of the considered units. Suspensions (i.e. survivors, units without failures) were taken 
into account in accordance with the time-dependent production volume. Figure 7 illustrates the process 
applied for quantifying the number of survivors. 

 
Figure 7. Approach for determining the number of survivors in field 

Based on the recorded complaints, a mileage distribution was determined which serves to allocate 
corresponding random values to the survivors. The calculated reliability predictions R at ts = 1 with a 
confidence level of PA = 50% were compared to their counterpart from field data. The results of the 
comparison is summarized in Table 3 in terms of a reliability ratio. 
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Table 3. Comparison of predicted and observed reliabilities 

System / Component: Reliability ratio (observed/predicted): 

     Planetary gear train 1.92 

     Shifting elements 0.93 

                            Clutch A 1.00 

Piston A 1.00 

EcoLife 1.81 

 
For piston A and clutch A, the model yields good conformity between predicted and observed reliability. 
In the case of the planetary gear train, the observed reliability deviates toward higher reliability levels 
by about half of the predicted value. This can partly be traced back to the serial system structure, where 
the components’ low reliability levels have a severe impact on the system’s reliability. The reliability 
of the shifting elements was slightly overestimated: One reason for this might be the high degree of 
simplification of the subsystem “shifting elements”. 
The observed reliability of the EcoLife system relates to the predicted reliability as similarly as the 
planetary gear train. 

11. Summary and outlook 
The method shown is capable of combining different sources of information by using Bayes' theorem 
and thus generating an assured statement on overall system reliability. However, the applied method 
seems to have a conservative tendency, even when prior knowledge is fully transferred (here, the 
transformation factor is Ф=1, cf. Krolo, 2004, and Maisch, 2007, pp. 95–96). The presented example of 
reliability prediction shows that the reliability prediction is more conservative than the observed 
reliability, despite the integration of results from calculation as prior knowledge and the consideration 
of test results as a conditional probability. 
The presented approach and its combination of methods is suitable for quantitative, transparent and 
updateable prediction of reliability at different system levels. Its fundamental operational capability and 
the benefit of its application have been proven. A further consideration of the transferability of the 
prediction to field behaviour may support the interpretation of the method-inherent conservative 
tendency of the prognosis, e.g. through factorial adjustments. 
Results of the EoL tests entail an increasingly conservative character for the predicted posterior 
reliability density for method-inherent reasons. The number of failures x reduces Beta parameter A, but 
increases B (cf. Equations 8 and 12) and thus a much lower reliability results. On the contrary, if only 
SR tests are conducted, parameter A would not be reduced and B would remain minimal. To overcome 
this conservative character an alternative method for calculating Beta parameters is needed. For 
example, if a sufficient amount of EoL tests have been performed, a full Weibull analysis can be applied 
and for the resulting confidence bounds at arbitrary levels at ts, beta parameters A and B can be found. 
The consideration of additional test results would add further accuracy to the reliability prediction. 
Acceleration factors ought to be integrated into the approach presented here in order to more 
transparently consider tests at a stress level different from the field stress. Transformation factors would 
only realize a partial – yet still scalable – transfer of prior knowledge, applicable in cases where the prior 
knowledge stems from former product generations for which comparability is limited, for example. The 
effect of alternative assumptions on the kind of reliability distribution from calculations ought to be 
analysed. 
The demonstrated structure of the approach for predicting reliability at different system levels by means 
of combining several different subsystem reliabilities of diverse origin (here: calculation and test) is 
practicable and suitable for a repetitive update of the reliability statement (R, PA). For this purpose, the 
obtained posterior density needs to be understood as the new prior density, which is then combined with 
the up-to-date results from tests or calculations. As a consequence, the accuracy of the reliability 
statement increases.  
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