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Abstract 
Advancements in multiple domains have led to a focus on autonomy in engineered systems. This focus 
necessitates a clear definition of the term ‘autonomy’ and its implications for system design. To this 
end, we present a framework that defines autonomy mathematically as a function of independence and 
task complexity. A deeper understanding is established by generating design principles that can be used 
to influence autonomy. We illustrate these concepts on autonomy quantification for a coffee machine 
and on a qualitative retrospective assessment of the evolution of autonomy for the automobile. 
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1. Introduction 
Autonomy of engineered systems is a major current technological trend. For example, the development 
and assimilation of autonomous vehicles in transportation systems is expected to have major social and 
economic impact. Similarly, increasingly autonomous everyday systems, such as household devices, 
and their connection through the internet of things may drastically affect the way we live. While the 
term 'autonomy' is widely used, articulating its precise definition and ways to measure the degree of 
'autonomy' of a particular system appears incomplete in the literature. 
For example, washing machines intuitively appear to have a low degree of autonomy, while Waymo's 
self-driving vehicles, to be available to the public in the near future (Wakabayashi, 2017), appear to be 
highly autonomous; the iRobot Roomba (iRobot, 2017) is a self-navigating vacuum cleaner that requires 
no human operator during cleaning, and its autonomy might be placed between that of the washing 
machine and the self-driving car. We hypothesize that defining and measuring autonomy in a more 
precise way will support design analysis of a desired degree of autonomy and ways to increase or 
decrease a system’s autonomy for a particular set of tasks. 
This paper presents a framework for defining and calculating the degree of autonomy in the design of a 
system. While there is still no clear consensus on the definition of autonomy, we identify important 
properties based on the existing literature. We define autonomy as a mode of operation that can be 
evaluated along a half-closed, bounded, and continuous interval (i.e., it can be a value in ሾ0, 1ሻ) and that 
has meaning only when both the system and the task it is executing are considered; moreover, we argue 
that its assessment can change over time.  
We decompose system autonomy into system independence and task complexity, that can be 
individually measured. Independence refers to the system's engagement in the execution of a task. Task 
complexity refers to the diversity in decision making under various options and uncertainties. From the 
proposed autonomy framework, we extract two design principles that can be used to vary a system's 

SYSTEMS ENGINEERING AND DESIGN 2821



 

autonomy, usually a desired increased autonomy: (1) remove the interactions from humans and other 
systems in the environment and (2) enable the system to make a wider range of choices. 
We demonstrate the use of this conceptual framework on the design of a more autonomous coffee 
machine and in assessing autonomy of an automobile. The coffee machine example shows how the 
method can be used to calculate and increase autonomy, and the automobile assessment qualitatively 
shows the effect of past and current developments in this domain of autonomy. 
In the remainder of the paper, we review the existing literature to identify research gaps and form a basis 
for the framework in Section 2. In Section 3, the framework is presented and formulated, followed by 
an elaboration of the properties independence and task complexity. We deduce a set of design principles 
from the framework in Section 4 and demonstrate its use and contributions in Section 5. 

2. Literature review 
In this section, we review the existing frameworks for defining and modeling autonomy of engineering 
systems, and set the stage for further elucidation. 

2.1. Existing frameworks 
One recurring method in literature for the classification of autonomy is through a chart of levels. Every 
level is accompanied by a textual description of criteria for the system and its surroundings. Some of 
these frameworks feature abstract descriptions, making them suitable for a wide range of applications 
(Endsley and Kaber, 1999; Parasuraman et al., 2000; Huang et al., 2007; Lodwich, 2016), while others 
are tailored for a specific domain to decrease ambiguity. Examples of the last category can be found in 
autonomy evaluations for UAV's (Unmanned Aerial Vehicles) (Clough, 2002) or motorized vehicles 
(SAE, 2016). Though being easily understandable, this type of classification is largely subjective, 
because it lacks mathematical foundations and depends on human interpretation. 
The works of Sheridan et al. (1978) and Parasuraman et al. (2000), later adapted by Beer et al. (2014), 
extend an abstract categorization by a set of guidelines on how to determine autonomy and its effects 
on the system's surroundings. Their results provide a thorough, clear understanding of the symbiosis 
between a system and its (human) operator. 
Although many researchers acknowledge that autonomy can be represented on a spectrum between 0 
and 1, few define it as a continuous quantity. Yanco and Drury (2004) cover many aspects that should 
determine a scale for system's autonomy, but evaluate systems subjectively on this scale. The work of 
Barber et al. (2000) considers multi-agent systems and assesses each individual agent's autonomy as its 
relative decision strength in reaching a common goal. Finally, Hrabia et al. (2015) propose various 
system capabilities as metrics to calculate the degree of autonomy. The works in this paragraph provide 
methods on how to quantify autonomy, yet their definitions do not match our present approach 
introduced in Section 2.3. 

2.2. Framework properties 
Review of the literature indicate that existing methods to evaluate autonomy are often based on 
qualitative assessments, are tailored to specific domains, and do not provide relations between autonomy 
of a system and design choices. Therefore, we focus on the following elements: 

1. Quantification: The desired framework should have a mathematical representation, enabling 
rigor and integration, thus allowing domain application and consistency in results. The framework 
should also build upon system characteristics the designer can influence, to be able to trace the 
implications of design choices on autonomy. 

2. Generality: While many domain-specific methods to assess autonomy are available. The present 
effort aims at a high level of abstraction to make it applicable to a wide range of domains. 

3. Design synthesis: Developing a black-box function that computes autonomy is appealing per se, 
but such a method becomes more valuable and useful when it enable investigation into how the 
system could be altered to increase autonomy. We therefore seek to develop a clearer 
understanding on how a system can evolve towards a more autonomous state.  

2822 SYSTEMS ENGINEERING AND DESIGN



 

2.3. Autonomy definitions and properties 
In this section, we aim to distil key definitions and properties in line with most of the literature. The 
findings from the literature form the foundation of the new definition and framework. In this effort we 
assert that autonomy is not just a measure of a system's capability but of a measure of a system's behavior 
in a task context, namely, it is a function of the system's independence and task complexity. Although 
task complexity remains constant, tasks become relatively easier due to technological advancement. 
Autonomy can be expressed in a single metric that is quantifiable on a continuum between 0% (no 
autonomy) and 100% (full autonomy) (Endsley and Kaber, 1999; Parasuraman et al., 2000; Huang et 
al., 2007). Autonomy is a property of a system's mode of operation, and therefore only has a meaning 
within a certain task context (Beer et al., 2014). For example, Waymo's self-driving car may have a 
different value of autonomy for the tasks 'driving' and 'parking'. Instead of saying 'this system is 
autonomous', we should say 'this system operates autonomously'. Autonomy is a function of both system 
and task. This presumption extends the quantification method of Hrabia et al. (2015). 
Another characteristic of autonomy extracted from the literature is a high degree of independence 
(Antsaklis and Passino, 1989; Wooldridge and Jennings, 1995; Barber et al., 2000; Murphy, 2000; 
Bradshaw et al., 2004; Schillo and Fischer, 2004; Yanco and Drury, 2004; Bekey, 2005; Huang et al., 
2007; Thórisson and Helgasson, 2012; Beer et al., 2014). Following these studies, we define 
independence as follows: 
 
Definition 1: A system's independence is its degree of initiative in the execution of a task, relative to 
that of external entities. 
 
A highly independent system initiates most of the interactions necessary to execute a task, whereas a 
less independent system relies on more input from other entities. However, independence cannot be 
used as the sole characteristic of autonomy. Though a washing machine, the Roomba and a self-driving 
car would all be considered quite independent, one could use the term ‘automatic’ instead of autonomous 
to further distinguish them. The difference between autonomy and automation, discussed in several 
research papers (Clough, 2002; Thórisson and Helgasson, 2012; Hrabia et al., 2015; Lodwich, 2016), is 
important. It is not possible to distinguish autonomy from automation using only independence. The 
washing machine could be considered a fairly independent system, but we argue that this system is 
automatic as opposed to autonomous, because the task it accomplishes is relatively ‘simple’. The 
Roomba and the self-driving car might be valued similarly independent as the washing machine, but 
why is it that we are more likely to use the term ‘autonomous’ for these systems? Clough (2002) states 
that the difference is the presence of “free will.” We can accurately predict the behavior of a washing 
machine going through its predetermined washing cycles, but associate the movements and orientation 
of the Roomba as the device having ‘a mind of its own’. The notion of ‘free will’ here is ambiguous and 
subjective. A young child might be fascinated by the ‘magic’ that causes the same washing machine to 
rinse and spin on its own, while the engineer that designed the control algorithm of the vacuum robot 
might simply think that its movements are all pre-programmed and therefore predictable.  
Here we set such aside a philosophical discussion about free will and concentrate on a more readily 
quantifiable model. According to Hrabia et al. (2015), automated systems operate in a well-defined, 
constant environment and they always respond to the same input with the same output. In line with 
Castelfranchi and Falcone (2003), we consider automation to be a subcategory of autonomy. We 
conclude from their work that the difference originates from the system property ‘intelligence’ and the 
task property ‘complexity’. Intelligence is a property that is closely related to autonomy by some 
researchers (Zeigler, 1990; Huang et al., 2007; Thórisson and Helgasson, 2012; Beer et al., 2014). 
However, we agree with Clough (2002) that this should not be a necessary component of autonomy; 
according to his example, a bacterium (low intelligence) is more autonomous than a toddler (high 
intelligence). Instead, we view intelligence as a tool that can be used to increase autonomy and/or 
performance. 
We use the term 'task complexity' to distinguish automation from autonomy and follow Campbell 
(1988), who based his framework on task characteristics that increase information load, information 
diversity and rate of information change; he identified four sources of complexity: (1) multiple paths to 
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a desired end-state, (2) multiple desired end-states, (3) conflicting interdependence and (4) uncertainty 
or probabilistic linkages. Here, task complexity reflects environmental uncertainty, unpredictability and 
decision-making complexity, and even hints 'free will' or 'freedom' in a single property. This concept 
covers aspects of existing works regarding autonomy, such as the presence of significant uncertainties 
(Sheridan et al., 1978; Antsaklis and Passino, 1989), unforeseen variations (Thórisson and Helgasson, 
2012), environmental changes (Zeigler, 1990; Murphy, 2000; Thrun, 2004) and a real-world 
environment (Bekey, 2005). It extends the quantified frameworks of Barber et al. (2000) and Hrabia et 
al. (2015), which only consider system capabilities. In a fully determined environment, we can define 
task complexity as follows: 
 
Definition 2: Task complexity is the number of possible ways in which a task can be executed. 
 
Note, however, that this definition only reflects the deterministic part of our concept of task complexity, 
and disregards uncertainty and environmental changes. The perception of task complexity, and therefore 
autonomy, is time-dependent. A task considered to be complex today might become trivial in ten years. 
The evaluation of task complexity itself will not change, but the scale on which we assess it will expand 
continuously. The first independent washing machine would have been more autonomous at the time, 
but has shifted into automation as the standards of task complexity have increased. Since we expect this 
trend to continue in the foreseeable future, we presume that autonomy of a constant system with a 
constant task will decay over time.  

3. Method 
We outline the foundation of the proposed framework for autonomy: the proposed concept of autonomy 
with the accompanying mathematical formulation. 

3.1. Assumptions 
We assume that a system has the purpose of fulfilling a high-level task ߬̃ within a context of external 
entities (humans and systems), which contribute to and benefit from the execution of these tasks. The 
system context is a network of ܰ entities ݁	ሺ݅ ൌ 1,2, … , ܰሻ, where ݁ଵ is the system itself and ݁ ଶ through 
݁ே are the externals. The high-level task ߬̃ is decomposed, such that ߬  contains all subtasks that are 
executed by ݁. ߬  is the largest set of tasks that can be assigned to a single entity ݁ and may be empty. 
A task ߬  is a general description of what an entity does. How entities execute their task can be influenced 
by the designer and will partly determine the corresponding autonomy. Tasks relate to the desired 
behavior in time, which excludes static functions such as 'storing liquid'. Figure 1 shows an example of 
the high-level task 'driving a car' and how it is decomposed and related to the system context. 

 
Figure 1. Mapping between entities and tasks for the high-level task of driving a car 

In the model representation, we include interactions between all entities necessary to conduct ߬̃ in the 
system context network. The establishment of this network implies the definition of the system boundary 
(i.e., entities included as part of the system context), which is crucial for the assessment of autonomy. 
Lodwich (2016) illustrates that a minor modification of the system boundary can drastically change our 
perception of autonomy. In multi-agent systems, autonomy can be assessed for a single agent but, by 
expanding the context, also for the complete set of agents. Alternatively, we can focus on one system 
and investigate the autonomy of its submodules. Figure 2 shows an example of a system context 
diagram, modelled in SysML (Weilkiens, 2007). The directed adjacency matrix representation of the 

2824 SYSTEMS ENGINEERING AND DESIGN



 

system context is deemed more suitable for our work, since it is more compact and easier to incorporate 
in a mathematical formulation.  

   
Figure 2. Examples of a system context network (left) (Weilkiens, 2007) and an  

        adjacency matrix (right) 

Finally, we assume that the systems that are evaluated always have a satisfactory (or feasible, in 
optimization terminology) performance, i.e. result in outcomes that meet the designer's and/or 
stakeholder's requirements This is an important assumption that simplifies modelling. 

3.2. Proposed autonomy definition 
Following our literature review and assumptions, we define autonomy as follows: 
 
Definition 3: Autonomy is the mode of operation in which a system executes a complex task, 
independently from humans and external systems. 
 
A system that operates autonomously makes decisions regarding a complex task, and carries them out 
by itself. This definition comes closest to the ALFUS framework presented by Huang et al. (2007), 
where the concept of task complexity is further decomposed into mission complexity and environmental 
difficulty. To avoid misinterpretation, it is important to consider the definitions of task complexity and 
independence as we use them here. Also, note that we do not link autonomy to the performance of the 
system. According to our definition it will be easy to make any system highly autonomous, simply by 
giving it vast decision freedom and completely removing all interactions from external entities. The 
majority of systems, however, may fail to have a satisfactory performance because they were not 
designed to operate in such extreme circumstances. 
Various works discussed in Parasuraman et al. (2000) observe no correlation between autonomy and 
performance. In some cases, an increase in autonomy will decrease performance (negative correlation); 
The previously mentioned Roomba, for instance, may take more time to clean a room than a classical 
vacuum cleaner manually operated by a human. Also, the cleanliness of the room may be lower, because 
the human uses visual feedback mechanism to check whether the room is sufficiently clean. Performance 
can also be considered in the context of Waymo's self-driving car. According to Urmson (2015), chances 
of accidents significantly drop in comparison to conventional vehicles, implying a positive correlation 
between system autonomy and super-system performance (safety). 

3.3. Proposed framework 
We locate autonomy in the space of independence and task complexity, similar to the automation versus 
task entropy grid in Sheridan et al. (1978). The framework uses independence instead of automation 
because, as previously elaborated, we consider this to be the underlying property that determines 
autonomy.  
We evaluate independence on the interval ሾ0,1ሿ and define it as a function of the system's behavior in a 
specific task setting. Task complexity is a function of the system's decision space for a task, and is 
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valued on a scale ሾ0,∞ሻ. If we imagine a task, we can always create another task that requires more 
decision effort, therefore this dimension is not bounded from above. 
We would like autonomy to be bounded in its properties, i.e. autonomy should take on finite values for 
the complete range of independence and task complexity. This means that autonomy can be proportional 
to independence, but has to be asymptotic with respect to task complexity. The use of an exponential 
function is motivated by task complexity's lower boundary; zero task complexity should also lead to 
zero autonomy. Given these assumptions, we express autonomy ߙ of entity ݁, executing task ߬ , as: 

ߙ ൌ ܫ ൬1 െ ݁ି	

ഊ ൰ (1) 

where ܫ is the independence of ݁, ܥ  is the task complexity of ߬ and ߣ is a benchmark task complexity 
which is further elaborated in Section 3.5. This function gives zero autonomy for the lower bounds of ܫ 
and ܥ . Full autonomy ሺߙ ൌ 1ሻ can only be achieved if the entity is completely independent ሺܫ ൌ 1ሻ 
and makes infinitely complex decisions ሺܥ → ∞ሻ. We explicitly state that full autonomy is utopic and 
can never be attained, due to asymptotic behavior in task complexity. Systems with zero autonomy do 
exist in the form of 'passive' systems, i.e. incapable of making decisions, such as a hammer. Therefore, 
autonomy takes values on the interval ሾ0, 1ሻ. This formulation implies that an operating system cannot 
have a high degree of autonomy if it has only high independence or high task complexity, since we 
require the combination of both. The autonomy function is monotonically increasing in ܫ and ܥ , and 
monotonically decreasing in ߣ; any design optimization formulation involving autonomy will need to 
include additional objectives and constraints to be meaningful. 
Figure 3 shows the two-dimensional independence-complexity space wherein systems can be located. 
Now we can further distinguish automation from autonomy. Full automation refers to a system that 
operates completely independently but always executes its task in the same way regardless of 
environmental uncertainties. For example, imagine a machine that labels plastic bottles without any 
external influence. If this machine operates with no other input, we would consider it as a fully 
automated system. This machine could become more autonomous (and less automated) if it had the 
ability to sort out bottles with misplaced labels. 

 
Figure 3. Independence-complexity space with constant autonomy lines (ࣅ ൌ ሻ 

A weighted sum can be used to calculate the autonomy of entity ݅ for multiple high-level tasks ߬̃	ሺ݆ ൌ
1,2, … , ఛܰሻ. Normalized task weights ݓሺሻ can be assigned subjectively, but computing them from task 
characteristics (e.g., frequency, time, criticality) would offer a more consistent approach. These weights 

could also be functions of ߙଵ
ሺሻ, giving higher weights to tasks that correspond to low system autonomy. 

In any case, the autonomy of ݁ for multiple tasks ఫ߬  is computed as: 

ߙ
ሺఛሻ ൌ ∑ ߙሺሻݓ

ሺሻேഓ
ୀଵ  (2) 

To investigate an entity's (human or system) autonomy, an abstract representation of its behavior in the 
environment is necessary. Such models have been developed and used in the domains of robotics 
(Zeigler, 1990; Huang et al., 2007), cognitive psychology (Broadbent, 1958) and military combat 
(Bazin, 2005). From a system's perspective, the behavior of a system can be represented as a 
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combination of input, internal operation, and resulting output. Any task can be decomposed into a 
combination of these three elements. This simple functional representation appears sufficient for our 
purpose. Inputs and outputs describe how an entity interacts with its environment and directly determine 
its independence. Decisions made in the internal operation are linked to the notion of task complexity, 
as introduced earlier. The following two sections propose mathematical formulations for independence 
and task complexity. 

3.4. Independence 
Using an information-processing model, we can create a network representation where nodes are entities 
and edges are interactions. An entity B (Figure 4) can send information to entity C that causes a behavior 
change in C; or it can solicit information from entity A that causes no behavior change in A. Actions 
and perceptions are the two forms of interaction between two entities:  
 
Definition 4: Action is information from a sender entity to a receiver entity that causes behavior change 
in the receiver. 
 
Definition 5: Perception or sensing is information requested from a sender to a receiver about the 
receiver that causes no behavior change in the receiver. 

 
Figure 4. Definition of directed cues in proposed interaction network 

Such a network represents the system designer's solution to accomplish a task and therefore depends on 
the realisation (embodiment) of the system. The system designer chooses which interactions are being 
used and where decisions are made, thereby changing independence (and indirectly influencing 
autonomy). Maximum system independence occurs when the system initiates every sensing and action 
in the network. There are no interactions initiated by any of the external entities and they only experience 
the actions from the system. Figure 5 (left) displays this extreme case with 100% independence, where 
all interactions are initiated by the system. The same figure (right) shows the other extreme, where the 
system initiates no interaction (0% independence). In the context of independence, there is no need to 
distinguish actions from perceptions, so hereon we will use only the term interaction. 

     
Figure 5. Interaction networks and adjacency matrices with full system independence  

              (left) and no system independence (right) 

To calculate the independence of a system with multiple entities, let ܣ be the adjacency matrix of the 
interaction network that corresponds to ߬̃. We then define the independence of ݁ as the sum of its 
initiated interactions, normalized by all interactions in the network: 

 (3) 

where ݅ and ݇ refer to the sending and receiving entity, respectively. Note that the sum of all entities’ 
independence for ߬̃ is equal to one. The binary values in the adjacency matrix can be replaced by real 

݅ܫ ൌ
∑ ݇݅ܣ
ܰ
݇ൌ1

∑ ∑ ݇′݅ܣ
ܰ
݅′ ൌ1

ܰ
݇ൌ1
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numbers to reflect relative interaction strength. This strength value can be based on interaction 
frequency, time, criticality, priority etc., with the formulation remaining the same. When the interaction 
strength is a measureable quantity, then the value of an entity's independence can be validated by an 
experiment. 

3.5. Task complexity 
At present we assume that task complexity can be quantified in a single dimension. We stated in Section 
3.3 that task complexity can be infinitely large. To prevent ill-conditioning of Equation (1) for large 
values of ܥ , a scaling factor ߣ is introduced. This factor is called the benchmark task complexity and 
represents the status quo. The factor ߣ is a measure for the most complex task we can achieve at any 
point in time. Therefore, ߣ depends on technical, economic and environmental factors. We have no 
explicit functional form for this quantity at present and we assume it as given. 
From Equation (1), since ݁ି௫ becomes very small for x ≥ 5, the practical range of task complexity for 
autonomy is ሾ0,  The .ܫ ሿ, with tasks above 5λ having approximately the same autonomy for constantߣ5
value of 5ߣ is not a limit; rather, it reflects the continuously changing interpretation of a high complexity 
task. Any function for computing task complexity should have a range in the above interval.  
Haerem et al. (2015) proposed the number of ways to execute a task as a metric for complexity. Their 
method requires an a-priori generated network of actions and can therefore formalize the deterministic 
part of our current concept of task complexity. However it is unable to incorporate uncertainty within 
the task itself. A suitable metric for uncertainty has not yet been found and is necessary to be 
incorporated for a complete quantification of task complexity.  
A very simple and, unfortunately, subjective method to evaluate task complexity ܥ  is by qualitatively 
assigning a value relative to 5ߣ, based on the four sources in Section 2.3. We stress again that any 
method, even if quantified, requires an accurate description of system and task. A vacuum cleaner might 
clean a room with less task complexity than a human operator. Though the entities' tasks remain the 
same and are graded with a constant task complexity, they become relatively less complex as ߣ increases.  
In our statement that tasks maintain their complexity over time, we imply that the context remains 
exactly the same. The task of driving a car, for instance, has increased in absolute task complexity over 
the last decades, because of an increasing amount of vehicle features (hence, interactions) and a more 
complex infrastructure. 'Driving a car in 1960' and 'driving a car in 2017' are two different tasks and, 
therefore, have different complexities. Since we evaluate task complexity on a ߣ-dependent scale, the 
actual value of ߣ is unimportant and we assume ߣ ൌ 1 in our analyses. 
As an example, assume we qualitatively evaluate a system's task to be of 'medium' complexity and refer 
to 'medium' as 50% of 5ߣ. We then acquire a value of ܥଵ ൌ 2.5 for ߣ ൌ 1, and use this to determine the 
system's autonomy as ߙଵ ൌ 0.46 (where ܫଵ ൌ 0.5). If we assess autonomy of this system for a changing 
technological standard, we can observe a decay as the benchmark task complexity increases, as shown 
in Figure 6. 

 
Figure 6. Autonomy decays over technological advancement 

If the same situation is evaluated in a more technologically advanced future where ߣ has doubled, it 
should be considered proportionally easier than before. The task complexity will have dropped to 25% 
of 5ߣ, remaining at the previously acquired value ܥଵ ൌ 2.5. With this example, we want to show that 
even though a task maintains a constant absolute task complexity, it becomes relatively easier as ߣ 
increases. 
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4. Design principles to increase autonomy 
Using the introduced framework, we extract two principles that a designer can use to increase the 
system's autonomy. The first proposes alterations to the system implementation and relates to 
independence, the second affects the task scope and hence, task complexity. These principles assume 
that the design decisions are made without sacrificing system performance, as noted in Section 3.1. 
 
Design Principle 1: To increase autonomy, remove interactions from external entities by introducing 
new interactions, initiated by the system. 
 
The designer has to remove interactions that are initiated by external entities, see Equation (3). To 
maintain functionality and performance regarding the task, interactions from the system can be added. 
An example of this principle is the evolution of a lighting system in a room. The user flipping a switch 
(action from external to system) is replaced by a motion sensor that detects a person in the room 
(perception from system to external), triggering the on/off state of the light. By the definitions introduced 
in this work, the motion-actuated lighting system is more autonomous than the manual lighting system. 
 
Design Principle 2: To increase autonomy, increase the task complexity of the entity's task. 
 
Autonomy will increase when the system has the authority to make more diverse choices. If the same 
lighting system can be upgraded to adjust brightness based on the time of the day or the weather, the 
system autonomy increases.  
 
These two principles can be applied for each individual task, or a designer might focus only on tasks 
with larger weights in Equation (2). 

5. Illustrative examples 
We present some simple examples to demonstrate how the above ideas can be sued. 

5.1. Coffee machine 
Consider a capsule-based coffee machine's autonomy for brewing coffee. First, the boundary is defined 
and the external entities identified. SysML's sequence diagram (Weilkiens, 2007) is a suitable source of 
information for the interaction network. We assign each interaction a value based on how long it occurs 
in seconds. Interactions that occur more than once are simply superimposed, and their values are 
summed. Using the introduced equations, we find an independence value for every entity. Note that 
entities that do not initiate any interaction are completely dependent (zero independence). As stated 
before, task complexity is evaluated subjectively and requires a more profound method to enable rigor. 
For now, we assume that the coffee machine executes its tasks in a relatively simple fashion and assign 
a value of ܥଵ ൌ 0.5. The user makes more choices and is awarded ܥଶ ൌ 1. 

       
Figure 7. Timed interactions (left), interaction adjacency matrix (centre) and  

         resulting independence and autonomy degrees per entity (right) 

We apply design principle 1 and identify that the interactions from the user should be removed. It might 
be infeasible or unprofitable, but enabling the machine to take capsules and cups by itself will increase 
its autonomy. Design principle 2 advises to increase the diversity of choices the machine can make. The 

Take capsule 5
Place capsule 10
Take cup 15
Place cup 3
Turn on 1
Select concentration 1
Heat 15
Brew coffee 15
Dispense coffee 15

Time [s] Coffee machine 15
User

Capsule 15 5
Cup 15 15

Water 30
Coffee 30

Coffee machine 72,00 % 28,3 %
User 28,00 % 17,7 %

Capsule 0,00 % 0,0 %
Mug 0,00 % 0,0 %

Water 0,00 % 0,0 %
Coffee 0,00 % 0,0 %

AUTIND
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system's autonomy will increase when it is able to detect and observe the user and select the best suitable 
type of coffee and concentration based on whatever data it acquired. Figure 8 shows the resulting 
independence and autonomy after applying the design principles. Principle 1 is demonstrated by 
rerouting the interactions 'take capsule' and 'take cup' from coffee machine to capsule and cup, 
respectively, and removing the interactions 'place capsule' and 'place cup'. Principle 2 is realised by 
swapping the task complexity of the system and human, i.e. ܥଵ ൌ 1 and ܥଶ ൌ 0.5. 

  
Figure 8. Application of principle 1 (left), principle 2 (centre) and both (right) 

We observe that both design principles lead to an increase in system autonomy and reduction in user 
autonomy, and show synergy when combined. The application of the principles together increases 
system autonomy more than the sum of the separate gains from each principle. While we do not propose 
detailed design solutions in this example, we identify design targets to increase autonomy without 
sacrificing system performance when making detailed decisions. 

5.2. Automobile evolution 
Autonomy in automobiles has recently gained popularity. In a simple retrospective analysis, we assess 
past and current developments in automobiles within the proposed framework. This example contains a 
qualitative evaluation of independence and task complexity for the driver and the vehicle. The purpose 
is to show the historical trends in our framework while leaving the exact calculations to a more focused 
study on autonomous vehicle design. We consider the evolution of the automobile from its first 
appearance in the early 1900's, like Ford's Model T, through the developments of an electric starter, 
cruise control and an automatic transmission, to the current implementations of connected and smart 
cars. Figure 9 shows an indicative progression of the automobile and driver in the autonomy space for 
the task of driving a vehicle. 

 
Figure 9. Qualitative assessment of past and current automobile evolutions in the  

               independence-complexity space 

Early evolutions have been automating certain processes in the vehicle, increasing the independence of 
the automobile and consequently decreasing that of the driver. As a result, the automobile's task 
complexity increased. However, because of an increasing number of vehicles and more complex 
infrastructure, the driver's task complexity has also grown. It is with current developments of smart, 
connected cars that we observe a major leap in autonomy. Taking the control away from the driver 

DP1

Coffee machine 98,21 % 38,6 %
User 1,79 % 1,1 %

Capsule 0,00 % 0,0 %
Mug 0,00 % 0,0 %

Water 0,00 % 0,0 %
Coffee 0,00 % 0,0 %

AUTIND DP2

Coffee machine 72,00 % 45,5 %
User 28,00 % 11,0 %

Capsule 0,00 % 0,0 %
Mug 0,00 % 0,0 %

Water 0,00 % 0,0 %
Coffee 0,00 % 0,0 %

AUTIND DP1 + DP2

Coffee machine 98,21 % 62,1 %
User 1,79 % 0,7 %

Capsule 0,00 % 0,0 %
Mug 0,00 % 0,0 %

Water 0,00 % 0,0 %
Coffee 0,00 % 0,0 %

AUTIND
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significantly reduces their independence and task complexity, while it drastically increases both 
properties in the automobile, and displays a gain in vehicle autonomy and reduction in driver autonomy.  
This assessment suggests that recent efforts to increase vehicle autonomy are motivated by the desire to 
reduce the driver's autonomy. This desire could be the underlying stimulus for all developments 
regarding autonomy, and provides an interesting perspective on technology development. 

6. Conclusion 
We have proposed a new generalized framework intended as a guide for designers in the development 
of autonomy in systems. The definition of autonomy is relative to the defined system boundary, and so 
the method can be used to assess autonomy in multi-agent systems or in submodules of a system. The 
mathematical formulation links autonomy to two properties, namely independence and task complexity. 
We consider a decay in task complexity, and therefore in autonomy, over time. The proposed method 
breaks these properties down to system behavior, and two design principles give advice on how to 
increase autonomy. Independence is calculated by an interaction network, but the current evaluation of 
task complexity is qualitative and therefore subjective. A more rigorous assessment or model of task 
complexity should be developed in a future study. The framework is demonstrated in a quantitative and 
a qualitative example for a coffee machine and automobile evolution, respectively. The coffee machine 
example shows how autonomy can be calculated, based on its behavior, and how it can be increased 
following the design principles. The qualitative application of the framework to past and current 
developments in the automotive domain shows a distinct progression and presumes that the 
implementation of smart, connected vehicles leads to a large increase in this system's autonomy. Finally 
we observe that the drive for technology for autonomy comes from a desire to decrease user autonomy 
rather than to increase system autonomy per se. 
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